Vulnerabilities in RAM Core Dumps Joshua Hulst 04/20/09

1. Problem Definition

As the computing industry evolves, practices which were taken for granted in the past have to be re-examined and updated to work with modern systems. One such area which needs to be evaluated is the use of unencrypted data stored in RAM. Recent attacks such as the RAM cold boot attack (Skorobogatov) have demonstrated that RAM is not as secure as once thought. Another way to access contents stored in RAM is to crash the application and obtain a snapshot of the processes memory, also known as a core dump. In this report, I show how to setup an Linux to give core dumps and explain how this could be exploited to provide sensitive data to a malicious user. I also examine two popular open-source applications to see what data is available in their memory snapshot.

The main motivation to keeping data in RAM is the performance increases it provides. By keeping a certificate or password in RAM, the data can be used easier, rather than going to disk, which can be encrypted. The operating system is responsible for protecting RAM from other processes, providing a secure working environment for each process. But, some operating systems can be manipulated to give up RAM contents on abnormal termination of a process. Linux provides this functionality for debugging purposes. By examining the core dump, a developer can see problems and try to avoid them.

Linux capabilities to provide a core dumps can be manipulated though. If an attacker were to have access to an account which was running a secure application, they could crash the program, grab the core data, and analyze it. For instance, Eve works for a company that sells products and accepts credit cards as payment. Eve supports the web application which accepts the credit cards so she has the login of the user which the application runs as. Eve could perform the following steps and possible gain credit card information.

- 1. Eve makes application start with options to create a core dump on termination (Using ulimit)
- 2. Eve waits until users begin entering credit card information, which is then stored in RAM
- 3. Eve sends a signal to the process (using kill -11)
- 4. Application crashes, creating core dump
- 5. Eve analyzes core dump using a hex editor, finds confidential credit card data

2. Solution Approach

RAM is not secure. By keeping this in mind, the application developer can work to avoid storing sensitive data. It seems that many cases could be solved by clearing out the RAM data when done with it. The RAM which contains the data can be cleared out as soon as it is no longer needed. The shorter the time it resides in RAM, the smaller the chance that it will be in RAM when the core is dumped. For example, the following psuedocode could be written to erase the Credit Card number

char creditCard; creditCard = readCCNum(); doStuff(creditCard); creditCard = 0;

By doing this, the credit card number is stored only long enough to be processed, then erased.

3. Proof of concept case studies

The basic steps to get a core dump in Linux are very generic:

• Turn on core dumps – Use `ulimit -c unlimited` or place the line in /etc/sysctl.conf

- Using ulimit will set the core dump for the current session, adding the line in sysctl.conf enables it system wide
- Start application
- Make the application segfault
 - This can be done by exploiting the application or by sending a signal using `kill -11 <pid>`
- The core dump will be created in the directory where the application was started named core.<pid>

3.1. Asterisk

Asterisk is a popular open-source Voice over IP server. It supports multiple protocols, including SIP. The SIP protocol allows for user authentication, using a provided password. After a user authenticates, the password is kept in RAM stored close to the username. The version of Asterisk used is 1.4. See Fig. 1 for the setup and steps performed.

Now that the core dump is obtained, it can be examined with a hex editor. In Fig. 2, Okteta is used. jhulst is the username, 1234 is the password used, and demo is the context of the user.

		-			
C	000A:5DF8	65636B2D	73796E63		eck-sync
C	000A:5E04	A9040000	6A 68 75 6C	73740000	©jhulst
C	000A:5E10				
C	000A:5E1C				
C	000A:5E28				
C	000A:5E34				
C	000A:5E40				
C	000A:5E4C				
C	00A:5E58	01 00 00 00			
C	000A:5E64				
C	00A:5E70	01 00 00 00			<u>.</u>
C	000A:5E7C	31 32 33 34	00 00 00 00		1234
C	00A:5E88				
C	000A:5E94				
C	000A:5EA0				
C	000A:5EAC				
C	000A:5EB8				
C	000A:5EC4				
C	000A:5ED0				
C	000A:5EDC				
C	000A:5EE8				
C	000A:5EF4				
C	000A:5F00				
C	000A:5F0C				
C	000A:5F18		64656D6F	00 6C 74 00	demo . lt.
C	000A:5F24				
C	00A:5F30				

As can be seen, the user and all sensitive information is stored openly in RAM. Knowing this information would allow an attacker to impersonate a user.

3.2. Apache

Apache is an open-source web server. As with many other Linux programs, it gets its configuration from a text file. To get Apache to produce a core dump, a configuration option must be added to its configuration, which is commonly found in /etc/apache2/apache.conf. Adding the line CoreDumpDirectory <directory> instructs Apache to put the core dump in the specified directory. Core dumps obtained from an Apache instance running version 2.2.11 have plaintext versions of the configuration files. These configuration files include passwords to database servers as well as other services.

Figure 3 shows the option in the configuration file and Apache being started. It is then sent a kill signal using a method which sends the signal to all the child worker processes.

Fig. 3

As with the Asterisk example, the core dump can be loaded into a hex editor and analyzed. Here the mysql password and login (mythtv/mythtv) is seen as well as other parts of the configuration file which Apache uses to get all configuration options.

0013:7226	696E2020	20 20 20 20	20 20 20 22	6D 79 74 68	74762200	00	in "mythtv"	^
0013:723E	00000000	00736574	656E7600	00 40 42 50	09684250	09	seten∨@BP.hBP.	
0013:7250	000000000	00 00 00 00	38 41 50 09	00 00 00 00	70 3D 50 09	3E		
0013:7265	00000064	625F7061	7373776F	72642020	20 20 20 20	22	db_password "	
0013:727A	6D 79 74 68	74762200	00 00 00 00	00 00 3C 2F	46 69 6C 65	73	mythtv" <td></td>	
0013:728F	3E 00 00 00	00 00 00 00	00884250	09 B8 42 50	090000000	00	> BP . , BP	
0013:72A4	000000000	00 00 00 00	00 00 00 00	70 3D 50 09	5B 00 00 00	00	p=P.[
0013:72B9	000000000	00 00 00 3C	46 69 6C 65	73 <u>0000</u> C0	4250 <u>09</u> E8	42	ÀBP.èB	
0013:72CE	50 09 30 46	50090043	50 09 28 3F	50090000	00 00 70 3D	50	Р.0FPCP.(?Рр=Р	
0013:72E3	09610000	00 2A 2E 70	68 70 3E 00	00706870	5F 76 61 6C	75	.a*.php>php_valu	
0013:72F8	65 00 00 00	00 00 00 00	F0425009	20 43 50 09	50 43 50 09	00	е	
0013:7300	000000C8	42500900	00000070	3D 50 09 67	00000073	61	ÈBPp=P.gsa	
0013:7322	2 66 65 5F 6D	6F 64 65 20	20 20 20 20	20 20 20 20	20 20 20 20	20	fe_mode	
0013:7337	20 20 20 20	20 20 20 30	00706870	5F 76 61 6C	75650000	00	0.php_value	
0013:7340	00 00 00 00	40 43 50 09	70435009	A8 43 50 09	0000000000	С8	@CP.pCP."CPÈ	
0013:7361	42500900	00 00 00 70	3D 50 09 69	00 00 00 6D	656D6F72	79	BPp=P.imemory	
0013:7376	5 F 6C 69 6D	69742020	20 20 20 20	20 20 20 20	20 20 20 20	20	_limit	
0013:738E	20 20 20 31	32384D 00	0000000000	00706870	5F 76 61 6C	75	128Mphp_valu	
0013:73A0	65 00 00 00	00 00 00 00	98 43 50 <u>09</u>	C8435009	F8 43 50 09	00	eCP.ÈCP.øCP	
0013:73B5	00 00 00 C8	42500900	00 00 00 70	3D 50 09 6B	00000072	65	ÈBPp=P.kre	
0013:73CA	67697374	65725F67	6C 6F 62 61	6C 7 3 20 20	20 20 20 20	20	gister_globals	
0013:73DF	20 20 20 20	20 20 20 30	00706870	5F 76 61 6C	75650000	00	0.php_value	
0013:73F4	00 00 00 00	E8 43 50 09	<u>18 44 50 09</u>	48 44 50 09	00 00 00 00	С8	èCPDP.HDPÈ	
0013:7409	42 50 09 00	00000070	3D 50 09 6C	00 00 00 6D	61676963	5F	BPp=P.lmagic_	
0013:741E	71 75 6F 74	65735F67	70632020	20 20 20 20	20 20 20 20	20	quotes_gpc	
0013:7433	20 20 20 30	00706870	5F 76 61 6C	75650000	00 00 00 00	00	0.php_value	
0013:7448	38 44 50 09	68 44 50 09	98 44 50 09	0000000000	C8425009	00	8DP hDP DP BR BBP 8	V

4. Analysis

After obtaining the core dumps, a malicious user can analyze them using standard hex editors. By searching the data for known keywords, such as usernames, the user can locate areas where sensitive data is stored. In Asterisks case, as the password is stored close to the username, it is trivial to find the password once the username is known. Also, searching for large strings of printable characters is a good way to look for certificates or configuration files that are stored.

As the core dump retrieved is not necessarily time sensitive, the user has as much time as is necessary to perform full analysis. A suggested practice would be to obtain the core dump and transfer it to another machine for further analysis to be done at the users convenience.

While Linux provides a mechanism for obtaining the core dumps, there are restrictions imposed. First, only the user which owns the process is allowed to send the segmentation fault signal. Second, the core dump is created with read only permissions, owned by the user who owns the process. These restrictions are removed for the root user, but for everyone else, access is limited to user who owns the process. There are still cases where shared users can exploit the core dump, but its usefulness is limited.

5. Conclusion

As can be seen, the vulnerability of RAM is a problem which must be addressed. While the above methodology is limited in its usefulness, it exposes the problem further. RAM encryption is an option, but it must be unencrypted at some point. If this unencryption is done at the operating system level, the core dump method would still be valid. As with any vulnerability, there will be both hardware and software solutions to the problem, but until then, developers can be more careful about what is stored in RAM and how they use that data.

Works Cited

<u>A Reference Guide to all things VoIP</u>. 22 Apr. 2009 < http://www.voip-info.org>.

- <u>SIP: Session Initiation Protocol</u>. Network Working Group. 23 Apr. 2009 <<u>http://tools.ietf.org/html/rfc3261</u>>.
- Skorobogatov, Sergei. *Low temperature data remanence in static RAM*. University of Cambridge, Computer Laboratory. <u>http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.html</u>. Retrieved on 2008-02-27.