
Hulst 1

Vulnerabilities in RAM Core Dumps
Joshua Hulst

04/20/09

Hulst 2

1. Problem Definition
As the computing industry evolves, practices which were taken for granted in the past have to

be re-examined and updated to work with modern systems. One such area which needs to be evaluated
is the use of unencrypted data stored in RAM. Recent attacks such as the RAM cold boot attack
(Skorobogatov) have demonstrated that RAM is not as secure as once thought. Another way to access
contents stored in RAM is to crash the application and obtain a snapshot of the processes memory, also
known as a core dump. In this report, I show how to setup an Linux to give core dumps and explain
how this could be exploited to provide sensitive data to a malicious user. I also examine two popular
open-source applications to see what data is available in their memory snapshot.

The main motivation to keeping data in RAM is the performance increases it provides. By
keeping a certificate or password in RAM, the data can be used easier, rather than going to disk, which
can be encrypted. The operating system is responsible for protecting RAM from other processes,
providing a secure working environment for each process. But, some operating systems can be
manipulated to give up RAM contents on abnormal termination of a process. Linux provides this
functionality for debugging purposes. By examining the core dump, a developer can see problems and
try to avoid them.

Linux capabilities to provide a core dumps can be manipulated though. If an attacker were to
have access to an account which was running a secure application, they could crash the program, grab
the core data, and analyze it. For instance, Eve works for a company that sells products and accepts
credit cards as payment. Eve supports the web application which accepts the credit cards so she has the
login of the user which the application runs as. Eve could perform the following steps and possible
gain credit card information.

1. Eve makes application start with options to create a core dump on termination (Using
ulimit)

2. Eve waits until users begin entering credit card information, which is then stored in
RAM

3. Eve sends a signal to the process (using kill -11)
4. Application crashes, creating core dump
5. Eve analyzes core dump using a hex editor, finds confidential credit card data

2. Solution Approach
RAM is not secure. By keeping this in mind, the application developer can work to avoid

storing sensitive data. It seems that many cases could be solved by clearing out the RAM data when
done with it. The RAM which contains the data can be cleared out as soon as it is no longer needed.
The shorter the time it resides in RAM, the smaller the chance that it will be in RAM when the core is
dumped. For example, the following psuedocode could be written to erase the Credit Card number

char creditCard;
creditCard = readCCNum();
doStuff(creditCard);
creditCard = 0;

By doing this, the credit card number is stored only long enough to be processed, then erased.

3. Proof of concept case studies

The basic steps to get a core dump in Linux are very generic:
• Turn on core dumps – Use `ulimit -c unlimited` or place the line in /etc/sysctl.conf

Hulst 3

• Using ulimit will set the core dump for the current session, adding the line in
sysctl.conf enables it system wide

• Start application
• Make the application segfault

• This can be done by exploiting the application or by sending a signal using `kill -11
<pid>`

• The core dump will be created in the directory where the application was started named
core.<pid>

3.1. Asterisk
Asterisk is a popular open-source Voice over IP server. It supports multiple protocols, including

SIP. The SIP protocol allows for user authentication, using a provided password. After a user
authenticates, the password is kept in RAM stored close to the username. The version of Asterisk used
is 1.4. See Fig. 1 for the setup and steps performed.

Fig. 1

Now that the core dump is obtained, it can be examined with a hex editor. In Fig. 2, Okteta is used.
jhulst is the username, 1234 is the password used, and demo is the context of the user.

Hulst 4

As can be seen, the user and all sensitive information is stored openly in RAM. Knowing this
information would allow an attacker to impersonate a user.

3.2. Apache
Apache is an open-source web server. As with many other Linux programs, it gets its

configuration from a text file. To get Apache to produce a core dump, a configuration option must be
added to its configuration, which is commonly found in /etc/apache2/apache.conf. Adding the line
CoreDumpDirectory <directory> instructs Apache to put the core dump in the specified directory. Core
dumps obtained from an Apache instance running version 2.2.11 have plaintext versions of the
configuration files. These configuration files include passwords to database servers as well as other
services.

Figure 3 shows the option in the configuration file and Apache being started. It is then sent a
kill signal using a method which sends the signal to all the child worker processes.

Fig. 3

As with the Asterisk example, the core dump can be loaded into a hex editor and analyzed.
Here the mysql password and login (mythtv/mythtv) is seen as well as other parts of the configuration
file which Apache uses to get all configuration options.

Hulst 5

Fig. 4

4. Analysis
After obtaining the core dumps, a malicious user can analyze them using standard hex editors.

By searching the data for known keywords, such as usernames, the user can locate areas where
sensitive data is stored. In Asterisks case, as the password is stored close to the username, it is trivial to
find the password once the username is known. Also, searching for large strings of printable characters
is a good way to look for certificates or configuration files that are stored.

As the core dump retrieved is not necessarily time sensitive, the user has as much time as is
necessary to perform full analysis. A suggested practice would be to obtain the core dump and transfer
it to another machine for further analysis to be done at the users convenience.

While Linux provides a mechanism for obtaining the core dumps, there are restrictions
imposed. First, only the user which owns the process is allowed to send the segmentation fault signal.
Second, the core dump is created with read only permissions, owned by the user who owns the process.
These restrictions are removed for the root user, but for everyone else, access is limited to user who
owns the process. There are still cases where shared users can exploit the core dump, but its usefulness
is limited.

5. Conclusion
As can be seen, the vulnerability of RAM is a problem which must be addressed. While the

above methodology is limited in its usefulness, it exposes the problem further. RAM encryption is an
option, but it must be unencrypted at some point. If this unencryption is done at the operating system
level, the core dump method would still be valid. As with any vulnerability, there will be both
hardware and software solutions to the problem, but until then, developers can be more careful about
what is stored in RAM and how they use that data.

Hulst 6

Works Cited

A Reference Guide to all things VoIP. 22 Apr. 2009 <http://www.voip-info.org>.

SIP: Session Initiation Protocol. Network Working Group. 23 Apr. 2009
<http://tools.ietf.org/html/rfc3261>.

Skorobogatov, Sergei. Low temperature data remanence in static RAM. University of Cambridge,
Computer Laboratory. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.html. Retrieved
on 2008-02-27.

http://tools.ietf.org/html/rfc3261
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.html
http://en.wikipedia.org/wiki/University_of_Cambridge
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.html

